Strength Restoration of Cracked Sandstone and Coal under a Uniaxial Compression Test and Correlated Damage Source Location Based on Acoustic Emissions

نویسندگان

  • Xiaowei Feng
  • Nong Zhang
  • Xigui Zheng
  • Dongjiang Pan
  • Zhonghao Rao
چکیده

Underground rock masses have shown a general trend of natural balance over billions of years of ground movement. Nonetheless, man-made underground constructions disturb this balance and cause rock stability failure. Fractured rock masses are frequently encountered in underground constructions, and this study aims to restore the strength of rock masses that have experienced considerable fracturing under uniaxial compression. Coal and sandstone from a deep-buried coal mine were chosen as experimental subjects; they were crushed by uniaxial compression and then carefully restored by a chemical adhesive called MEYCO 364 with an innovative self-made device. Finally, the restored specimens were crushed once again by uniaxial compression. Axial stress, axial strain, circumferential strain, and volumetric strain data for the entire process were fully captured and are discussed here. An acoustic emission (AE) testing system was adopted to cooperate with the uniaxial compression system to provide better definitions for crack closure thresholds, crack initiation thresholds, crack damage thresholds, and three-dimensional damage source locations in intact and restored specimens. Several remarkable findings were obtained. The restoration effects of coal are considerably better than those of sandstone because the strength recovery coefficient of the former is 1.20, whereas that of the latter is 0.33, which indicates that MEYCO 364 is particularly valid for fractured rocks whose initial intact peak stress is less than that of MEYCO 364. Secondary cracked traces of restored sandstone almost follow the cracked traces of the initial intact sandstone, and the final failure is mainly caused by decoupling between the adhesive and the rock mass. However, cracked traces of restored coal only partially follow the traces of intact coal, with the final failure of the restored coal being caused by both bonding interface decoupling and self-breakage in coal. Three-dimensional damage source locations manifest such that AE events are highly correlated with a strength recovery coefficient; the AE events show a decreasing tendency when the coefficient is larger than 1, and vice versa. This study provides a feasible scheme for the reinforcement of fractured rock masses in underground constructions and reveals an internal mechanism of the crushing process for restored rock masses, which has certain instructive significance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distinct element modelling of the mechanical behaviour of intact rocks using voronoi tessellation model

This paper aims to study the mechanical behaviour and failure mechanism of intact rocks under different loading conditions using the grain based model implemented in the universal distinct element code (UDEC). The grain based numerical model is a powerful tool to investigate complicated micro-structural mechanical behaviour of rocks. In the UDEC grain based model, the intact material is simulat...

متن کامل

Equilibrium condition nonlinear modeling of a cracked concrete beam using a 2D Galerkin finite volume solver

A constitutive model based on two–dimensional unstructured Galerkin finite volume method (GFVM) is introduced and applied for analyzing nonlinear behavior of cracked concrete structures in equilibrium condition. The developed iterative solver treats concrete as an orthotropic nonlinear material and considers the softening and hardening behavior of concrete under compression and tension by using...

متن کامل

Application of Schmidt rebound number for estimating rock strength under specific geological conditions

A literature review revealed that most of the empirical equations introduced for determination of the uniaxial compressive strength (UCS) of rocks based on the Schmidt hammer rebound number (N) are not sufficiently reliable mostly due to the relatively low coefficient of correlations. This is attributed to the fact that in most cases one formula is used for all types of rocks, altho...

متن کامل

Numerical assessment of influence of confining stress on Kaiser effect using distinct element method

Nowadays acoustic emission (AE) testing based on the Kaiser Effect (KE) is increasingly used to estimate the in-situ stress in laboratories. In this work, this effect is assessed on cylindrical specimens in numerical simulations of the cyclic loadings including loading, unloading, and re-loading cycles using a 3D code called the particle flow code (PFC) based upon the distinct element method. T...

متن کامل

Determination of Damage Constitutive Behavior for Rock Salt Under Uniaxial Compression Condition with Acoustic Emission

The mechanical characteristics of rock salt have an important influence on the safety of the salt cavity. The acoustic emission (AE) technique was used to analyze the generation of microcracks in rock salt under uniaxial compression condition. By monitoring acoustic emission in whole process of stress strain curve under uniaxial compression test, the damage characteristic of rock salt is obtain...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015